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Microscopic algae in surface waters 
depend on nitrate, only available in 
deep waters. Credit: Kim Fulton-
Bennett, MBARI 
Reference:	K.S.	Johnson,	S.C.	Riser,	D.M.	
Karl.	Nitrate	supply	from	deep	to	near-
surface	waters	of	the	North	Pacific	
subtropical	gyre.	Nature.	Vol	465,	Issue	
7300.	24	June,	2010. 

Figure	credit:	Ed	Zaborski,	
University	of	Illinois.	Adapted	from	
House	and	Parmelee	(1985).	
Soil	Fer)lity	in	Organic	Farming	
Systems:	Much	More	than	Plant	
Nutri)on,	Last	Updated:	April	04,	
2011,	View	as	web	page,	Author:	
Michelle	Wander,	U	of	Illinois	

Microbial Communities:�
Important in many environments 
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Microbes are Dominant in Biosphere 
§  Biomass: 

Prokaryotes  4-6 x 1030 cells, containing: 
–  350-550 Pg of C   (0.6-1 X  plants) 
–    85-130 Pg of N       (10 X plants) 
–      9-14   Pg of P        (10 X plants) 

§  Environments: 
–  Open ocean                           0.12 x 1030 cells 
–  Soil                                         0.26 x 1030  cells 
–  Oceanic subsurface                3.5  x 1030 cells 
–  Terrestrial subsurface   0.25 – 2.5  x 1030 cells 

§  Biodiversity: 400,000 – 4,000,000 species 
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Whitman et al. (1998) PNAS 95:6578 
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Can you name these bacteria? 
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From: Ch. 2 -- Terrestrial Bacteria from Agricultural Soils: By Masoomeh Shams-Ghahfarokhi, Sanaz 
Kalantari and Mehdi Razzaghi-Abyaneh  DOI: 10.5772/45918 

Morphological	properRes	are	not	phylogeneRcally	coherent.	

Challenges to Traditional Taxonomy 

§  Only a small number of phenotypic traits 
are easily tested. 

§  Phenotypic traits are often not congruent 
with (molecular) phylogeny. 

§  The vast majority of microbial species 
have not been studied in pure culture.  

h:p://rdp.cme.msu.edu	 5	
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Elucidation of the three domains of life  

Carl Woese 
(1929 – 2012) 

Ribosomal RNA sequence as 
phylogenetic marker 

§  Discovered “3rd 
kingdom” 

§  Archaea and Bacteria 
separate domains 

§  Contrast with former 
Prokaryote hypothesis 

Three	domains	of	life	based	on	the	work	of	Carl	Woese	and	colleagues	

Phylogenetic Tree of Life 
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Ribosomes – Universal Marker 

§  Protein synthesis factory. 
§  Core function present in all cellular 

organisms. 
§  Very little evidence of horizontal gene 

transfer. 
§  Historically easy to work with. 

–  Purify by centrifugation and extract rRNA. 

§  Now we use PCR to amplify from genomic 
DNA 
–  rRNA genes have conserved regions 

interspersed with highly variable regions. 
–  Conserved regions used for both PCR primers 

and sequencing primers. 
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Bacteria
Reference sequence and structure: Escherichia coli (J01695)

October 2001

- 98+% conserved
- 90-98% conserved
- 80-90% conserved
- less than 80% conserved

ACGU
acgu

Phylogenetic conservation superimposed onto the
Escherichia coli Small Subunit rRNA secondary structure

Arc labels indicate the upper and lower number of nucleotides
known to exist within the associated variable region.

Positions with a nucleotide in more than 95% of the sequences are
shown in one of four categories:

Otherwise, the regions are represented by arcs.
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Interspersed	conserved		
and	variable	regions	

Diversity of uncultured organisms 
explored by rRNA sequencing 

David	A.	Stahl,	David	J.	Lane,	Gary	J.	Olsen	and	Norman	R.	Pace	
Science,	New	Series,	Vol.	224,	No.	4647	(Apr.	27,	1984),	pp.	409-411		
Published	by:	American	AssociaRon	for	the	Advancement	of	Science	
	

(trunk wall and trophosome) and Calyp- 
togena magnifica (gill tissue) and live 
specimens of Solemya velum were ob- 
tained (7); gill and foot tissues were 
excised and frozen immediately upon 
receipt. Total RNA was isolated from 
homogenized tissues extracted with hot 
phenol and sodium dodecyl sulfate and 
fractionated by polyacrylamide gel elec- 
trophoresis (Fig. 1A). After elution, the 
mixtures of SS rRNA's (host and symbi- 
ont) were labeled at their S' termini with 
[^y-32P]ATP (adenosine triphosphate) and 
polynucleotide kinase or at their 3' ter- 
mini with [N'-32P]pCp (C, cytosine) and 
RNA ligase and were resolved by elec- 
trophoresis on 8 percent polyacrylamide 
sequencing gels (Fig. I B). All SS rRNA's 
were sequenced from both termini by 
enzymatic and chemical partial diges- 
tions (Fig. IC). The derived sequences 
and the alignments used for phylogenetic 
analysis are shown in Fig. 2. 

The relation of the symbiont SS 
rRNA's to those of better-known orga- 
nisms is best understood as a phyloge- 
netic tree (Fig. 3). The branch lengths 
are proportional to evolutionary distance 
as estimated from sequence divergence 
(legend to Fig. 3). The prokaryotic sym- 
bionts fall into the "purple photosynthet- 
ic bacteria" grouping, so named because 
the deepest branchings in the group in- 
volve the purple photosynthetic pheno- 

Evidence has accumulated that sulfur- 
oxidizing microbes can establish symbi- 
otic relationships with certain inverte- 
brates, producing "chemoautotrophic 
animals" (1). The putative symbionts 
were identified histologically and by the 
presence of high levels of certain Calvin 
cycle and sulfur-oxidative enzymes in 
the hydrothermal vent tube worm Riftia 
pachyptila (2), in which the bacteria fill a 
specialized organ, the trophosome. Simi- 
lar associations were noted in the gill 
tissues of vent clams, Calyptogena spp. 
(3) and in the bivalve Solemya (4), which 
inhabits sulfide-rich tidal flats. However, 
efforts to characterize further the chemo- 
autotrophic symbionts have been ham- 
pered by their resistance to cultivation. 

One approach to characterizing uncul- 
tivable organisms is to establish their 
phylogenetic relationships to better- 
known organisms by appropriate macro- 
molecular sequence comparisons (5). Ri- 
bosomal RNA's (rRNA) seem well-suit- 
ed among cellular macromolecules for 
such analyses because of their ubiqui- 
tous distribution, functional constancy, 
high conservation of primary structure, 
and apparent freedom from artifacts of 
lateral transfer (6). We have character- 
ized the symbioses mentioned above; SS 
RNA was used because it is relatively 
easily isolated and analyzed and because 
its sequence for some 200 organisms and 
organelles are available for comparison. 

Frozen samples of Riftia pachyptila 

B 
G A C U 51 

A 

Fig. 1. Solemya velum 55 rRNA sequence and abundance analysis. Total RNA 
from S. velum gill tissue was fractionated on a preparative. 8 percent polyacryl- 
amide gel containing 7M urea. RNA bands were visualized by ultraviolet 
shadow (A). The 55 rRNA zone was excised and eluted from the gel slice, and 
the rRNA's were recovered by precipitation. The mixture of 55 rRNA's was 
treated with alkaline phosphatase and labeled at the 5 ends with polynucleotide 
kinase and [z-32P]ATP and at the 3 termini with-RNA ligase and [5#-32P]pCp, as 
described (17). The end-labeled 55 rRNA's were then purified on 80-cm, 8 
percent polyacrylamide sequencing gels (B?. Individual 5S-sized bands were 
located by autoradiography, excised, and eluted from the gel slices. Sequence 
analysis was performed on the 5 and 3 end-labeled RNA's by enzymatic (18) 
and chemical (19) partial digestion. Terminal nucleotide analyses were per- 
formed by thin-layer chromatography or paper electrophoresis of nuclease P1 
(5#-labeled) or alkali (3#-labeled) RNA hydrolyzates (20). (C) A representative 
autoradiograph of a portion of the S. velum host (eukaryotic) 55 rRNA was 
subjected to chemical sequencing. Measurement of the relative in vivo abun- 
dance of host and symbiont 5S rRNA's was performed by two-dimensional 
electrophoretic analysis of in vitro-labeled oligonucleotides resulting from 
complete digestion of total 55 rRNA (A) with either ribonuclease A (D) or Tl 
(not shown). Total S. velum gill 55 rRNA was completely digested with 
ribonuclease A end-labeled with [z-32P]ATP and polynucleotide kinase. After 
labeling, an excess of 3#-uridylic acid and an additional 0.7 U of polynucleotide 
kinase were added, and the incubation was continued to remove the remaining 
[z-32P]ATP, which otherwise obscures the electropherogram. The end-labeled 
oligonucleotides were resolved by two-dimensional electrophoresis (21) and 
located by autoradiography (D). Spots I (GGGU), 2 (GAAGU), and 3 (GAAAGC) 
contain oligonucleotides unique to the S. velum host (eukaryotic) 55 rRNA, 
while spots 4 (GGGU), 5 (AGAAGU), and 6 (GGAAC) are unique to the 
symbiont (prokaryotic) 5S rRNA sequence (G, guanine; U, uracil; A, adenine). 
All spots were excised, and the radioactivity was determined by scintillation 
counting. Least squares analysis yielded the estimate that 19 percent of the SS 
rRNA recovered from the S. velum gill tissue is of the prokaryotic type. 
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Analysis of Hydrothermal Vent-Associated Symbionts by 
Ribosomal RNA Sequences 

Abstract. Ribosomal RNA (rRNA) sequences were used to establish the phyloge- 
netic a;ffiliations of symbioses in which prokaryotes appear to confer sulfur-based 
chemoautotrophy on their invertebrate hosts. Two submarine hydrothermal lent 
animals, the vestimentiferan tube worm Riftia pachyptila and the clam Calyptogena 
magnifica, and a tidal-flat bivalve, Solemya velum, were inspected. SS rRNA's were 
extracted from symbiont-bearing tissues, separated into unique forms, and their 
nucleotide sequences determined and related to other SS rRNA's in a phylogenetic 
tree analysis. The prokaryotic symbionts are related to one another and affiliated 
with the same narrow phylogenetic grouping as Escherichia coli and Pseudomonas 
aeruginosa. The sequence comparisons suggest that Riftia is more closely related to 
the bivalves than their current taxonomic status would suggest. 
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Prokaryotic Taxonomy 

§  Current taxonomy (nearly) coherent with 
phylogeneny. 

§  Taxonomy is informed by phenotype. 

§  Taxon boundaries are circumscribed by 
experts to attempt to give groups 
meaningful to the practitioners 

§  Uncultivated organisms not included 

h:p://rdp.cme.msu.edu	 12	

Phylogenetic Analysis �
vs. Classification 

§  Classification is conceptually easier to 
interpret.  

§  Often preferred when the groups are 
well understood. 

§  Phylogenetic methods are preferred 
for new groups or when the 
placement is not clear. 

13	h:p://rdp.cme.msu.edu	

Simple classifiers from our work 

h:p://rdp.cme.msu.edu	 14	

Taxonomic Classifiers 

§  Use concepts from Machine Learning 

§  Many algorithms can be applied 
 

§  Sequence Match 
– Nearest-Neighbor (Last Common Ancestor) 

§  RDP Classifier 
– Naïve Bayesian 
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The Ribosomal Database Project (RDP-II): sequences and tools for 
high-throughput rRNA analysis

Cole et al. (2005) Nucleic Acids Research 
Vol. 33, Database issue: D294–D296 
DOI: 10.1186/s40168-015-0093-6 
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The Ribosomal Database Project (RDP-II): sequences and tools for 
high-throughput rRNA analysis

Cole et al. (2005) Nucleic Acids Research 
Vol. 33, Database issue: D294–D296 
DOI: 10.1186/s40168-015-0093-6 

Sequence Match 



12/3/18	

4	

SeqMatch 

§  NN – Nearest-neighbor classifier 

§  k-NN – k nearest-neighbors classifier 

§  LCA – Last common ancestor 
      (Lowest common ancestor) 

h:p://rdp.cme.msu.edu	 18	

Can represent a sequence as �
a set of overlapping k-mers 

GAAGCACCGGCUAACUCCGUGCCAGCAGCCGCGGUAAUACGGAGGGUGCAAG 

GAAGCAC        UCCGUGC        GCGGUAA 

 AAGCACC        CCGUGCC        CGGUAAU 

  AGCACCG        CGUGCCA        GGUAAUA 

   GCACCGG        GUGCCAG        GUAAUAC 

    CACCGGC        UGCCAGC        UAAUACG 

     ACCGGCU        GCCAGCA        AAUACGG 

      CCGGCUA        CCAGCAG        AUACGGA 

       CGGCUAA        CAGCAGC        UACGGAG 

        GGCUAAC        AGCAGCC        ACGGAGG 

         GCUAACU        GCAGCCG        CGGAGGG 

          CUAACUC        CAGCCGC        GGAGGGU 

           UAACUCC        AGCCGCG        GAGGGUG 

            AACUCCG        GCCGCGG        AGGGUGC 

             ACUCCGU        CCGCGGU        GGGUGCA 

              CUCCGUG        CGCGGUA        GGUGCAA 

h:p://rdp.cme.msu.edu	 19	

GAAGCAC	

AAGCACC	

AGCACCG	

GCACCGG	

CACCGGC	

ACCGGCU	

CCGGCUA	

CGGAGGG	

GGAGGGU	

AGGGUGC	

GGGUGCA	

GGUGCAA	

GUGCAAG	

CGGCUAA	

GGCUAAC	

GCUAACU	

CUAACUC	

UAACUCC	

AACUCCG	

ACUCCGU	

CUCCGUG	

UCCGUGC	

CCGUGCC	

CGUGCCA	

GUGCCAG	

UGCCAGC	

GCCAGCA	

CCAGCAG	

CAGCAGC	

AGCAGCC	

GCAGCCG	

CAGCCGC	

AGCCGCG	

GCCGCGG	

CCGCGGU	

CGCGGUA	

GCGGUAA	

CGGUAAU	

GGUAAUA	

GUAAUAC	

UAAUACG	

AAUACGG	

AUACGGA	

UACGGAG	

ACGGAGG	

GAAGGGA	

AAGGGAC	

AGGGACG	

GGGACGG	

GGACGGC	

GACGGCU	

ACGGCUA	

CGGAGGU	

GGAGGUC	

GAGGUCC	

AGGUCCC	

GGUCCCA	

GUCCCAA	

UCCCAAG	

SeqMatch Comparison of �
16S rRNA genes from two species 
E.	coli	 A.	pyrophilus	

h:p://rdp.cme.msu.edu	 20	

SeqMatch Math 

Given query sequence A and training sequence B, 
the k-mer similarity between A and B is de9ined as:  


The training sequences with the �
highest SAB are the nearest-neighbors of query A


!!" ≡
|!–!"#$!in!common|

min !|!–!"#$!in!!|, |!–!"#$!in!!| !

SeqMatch classi9ies query A into the 
same taxa as its nearest-neighbors
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LCA – Last Common Ancestor 

Bacillus	thuringiensis;	WS	2625;	Z84587	
Bacillus	cereus;	AF206326		
Bacillus	sp.	No.49;	AB066347	
Bacillus	clausii;	AJ297492	
Bacillus	flexus	(T);	IFO15715;	AB021185	

Geobacillus	stearothermophilus;	DSM	22T;	AJ294817	
Geobacillus	caldoxylosilyRcus;	B70;	AJ489326	

Bacillaceae	

Bacillus		

Geobacillus	

Bacillales	

Listeriaceae	

Brochothrix	campestris;	NBRC	15547;	AB680897	
Brochothrix	thermosphacta;	MF	88;	AY543029	
Brochothrix	campestris;	DSMZ	4712;	AY543038	

Listeria	ivanovii	(T);	CLIP12229;	X98529	

Listeria	grayi;	NCTC10812;	X56154	

Brochothrix	

Listeria	

h:p://rdp.cme.msu.edu	 22	 23	

Naive Bayesian classifier for rapid assignment of rRNA sequences 
into the new bacterial taxonomy.

Wang et al. (2007) AEM 73(16): 5261-5267 
DOI: 10.1128/AEM.00062-07 
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Naive Bayesian classifier for rapid assignment of rRNA sequences 
into the new bacterial taxonomy.

Wang et al. (2007) AEM 73(16): 5261-5267 
DOI: 10.1128/AEM.00062-07 

 

§  Rapidly assigns sequences into bacterial, 
archaeal and fungal taxonomies 

§  Works well on partial or full-length sequences 

§  Bootstrap confidence estimates 

§  Still in use as a standard microbial classification 
method 

RDP Classifier 

§  Naïve Bayesian classifier 

§  Uses training data to estimate  
k-mer likelihood 

§  Assignment based on genus for 
which k-mers are most common 
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Estimating P(V|G) 

CGGCUAA GUAAUAC ACGGAGG GCCGCGG 

B. subtilis + + – – 

B. clausii + – + – 

B. smithii + + – – 

B. flexus + + + – 

B. ruris + + – – 

Probability: 99% 80% 40% 01% 

P(V|Bacillus)	=	(0.99	⨉	0.80	⨉	0.40	⨉	0.01)	=	0.003168	or	≈	1	in	316	

When you have eliminated the impossible, whatever remains, however improbable, 
must be the truth.

Arthur Conan Doyle

 k-mer Set V                                 

P(V|Sinobaca)	=	(0.99	⨉	0.01	⨉	0.20	⨉	0.01)	=	0.000019	or	≈	1	in	50505	
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RDP Classifier: �
Leave-one-out Testing 

h:p://rdp.cme.msu.edu	 27	
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1995 – Haemophilus influenzae genome 
published 
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Bacterial and Archaeal Genomes 
Available at NCBI (9/3/2018) �

(Compare to >3 million rRNA genes) 

11403	 Complete	Genomes	
2025	 Complete	Chromosome	
70950	 Scaffolds	
72311	 ConRgs	only	
156689	 Total	Genomes	

Majority	from	a	small	number	of	species	

Metagenomics 

Metagenomics is the study of genetic material recovered 
directly from environmental samples…  
 
Because of its ability to reveal the previously hidden 
diversity of microscopic life, metagenomics offers a 
powerful lens for viewing the microbial world that has the 
potential to revolutionize understanding of the entire living 
world. 
 

— Wikipedia 
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Microbial Genomes from �
Uncultured Organisms 

§  Single Cell Genomes: Single microbial 
cells are separated  before sequencing 
–  Issues: Incomplete genomes, enzymatic DNA 

amplification causes artifacts 

§  Metagenomic Binning: Grouped from 
metagenomic assemblies 
–  Issues: Incomplete genomes, may mix allelic 

variants, contamination an issue 

High	Abundance	
Organisms	

Medium	Abundance	
Organisms	

Low	Abundance	
Organisms	

Sequencing a model microbiome 

High	Abundance	
Organisms	

Medium	Abundance	
Organisms	

Low	Abundance	
Organisms	

High	Abundance	
Organisms	

Medium	Abundance	
Organisms	

Low	Abundance	
Organisms	

Near-complete	
popgenomes	

ParRal	
popgenomes	

Lijle	assembly		
no	binning	
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ABSTRACT Estimations of microbial community diversity based on metagenomic data
sets are affected, often to an unknown degree, by biases derived from insufficient cover-
age and reference database-dependent estimations of diversity. For instance, the com-
pleteness of reference databases cannot be generally estimated since it depends on the
extant diversity sampled to date, which, with the exception of a few habitats such as
the human gut, remains severely undersampled. Further, estimation of the degree of
coverage of a microbial community by a metagenomic data set is prohibitively time-
consuming for large data sets, and coverage values may not be directly comparable be-
tween data sets obtained with different sequencing technologies. Here, we extend Non-
pareil, a database-independent tool for the estimation of coverage in metagenomic data
sets, to a high-performance computing implementation that scales up to hundreds of
cores and includes, in addition, a k-mer-based estimation as sensitive as the original
alignment-based version but about three hundred times as fast. Further, we propose a
metric of sequence diversity (Nd) derived directly from Nonpareil curves that correlates
well with alpha diversity assessed by traditional metrics. We use this metric in different
experiments demonstrating the correlation with the Shannon index estimated on 16S
rRNA gene profiles and show that Nd additionally reveals seasonal patterns in marine
samples that are not captured by the Shannon index and more precise rankings of the
magnitude of diversity of microbial communities in different habitats. Therefore, the new
version of Nonpareil, called Nonpareil 3, advances the toolbox for metagenomic analyses
of microbiomes.

IMPORTANCE Estimation of the coverage provided by a metagenomic data set, i.e.,
what fraction of the microbial community was sampled by DNA sequencing, repre-
sents an essential first step of every culture-independent genomic study that aims to
robustly assess the sequence diversity present in a sample. However, estimation of
coverage remains elusive because of several technical limitations associated with
high computational requirements and limiting statistical approaches to quantify di-
versity. Here we described Nonpareil 3, a new bioinformatics algorithm that circum-
vents several of these limitations and thus can facilitate culture-independent studies
in clinical or environmental settings, independent of the sequencing platform em-
ployed. In addition, we present a new metric of sequence diversity based on rarefied
coverage and demonstrate its use in communities from diverse ecosystems.

KEYWORDS bioinformatics, coverage, metagenomics, microbial ecology

The exploration of microbial diversity in natural and engineered environments has
been revolutionized by the use of metagenomics. However, the power of both

descriptive and comparative metagenomic analyses is strongly deterred by low cover-
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20,000,000	
Metagenomic	Reads	

Nonpareil-3 

10,000	
Challenge	Reads	

100,000,000	
Metagenomic	Reads	

Nonpareil-3 �
Measure relative abundance 

Nonpareil-k	 Challenge	Kmer	(length	24)	
(281	Trillion	possibiliRes)	

Kmer	match	

EffecRve	read	length	=	L	−	(k-1)		

§  Each challenge read represents 
0.01% of the metagenome.  

§  By measuring the abundance of each 
challenge read, we can:  
– Determine the coverage curve 
– Estimate the fraction with high, moderate  

and low coverage. 
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Multi-Gene Phylogenetic Analysis 

§  Uses additional marker genes 
– Universal: transcription – translation – replication  
– Choose for no horizontal gene transfer 
– Unfortunately, few genes meet these criteria 

•  100 – 130 genes commonly used 

§  Two main methods 
– Concatenate multiple gene sequences 
–  Supertrees (combine multiple trees) 
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R E S O U R C E

The rapid expansion of sequenced bacterial and archaeal genomes 
in the past decade has enabled the construction of genome-based 
phylogenies1–3 suitable for defining taxonomy. A robust taxonomy is 
needed to accurately describe microbial diversity, to interpret metage-
nomic data and to provide a common language for communicating 
scientific results4. Sequence-based phylogenetic trees provide a frame-
work for the development of a taxonomy that takes into account both 
evolutionary relationships and differing rates of evolution. Current 
microbial taxonomies such as those provided by NCBI5, SILVA6, 
RDP7, Greengenes8 and EzTaxon3 are often inconsistent with evolu-
tionary relationships, because many taxa circumscribe polyphyletic 
groupings. This inconsistency is partly attributable to historical phe-
notype-based classification, as exemplified by the clostridia: micro-
organisms sharing morphological similarities have been erroneously 
classified in the genus Clostridium9,10. Modern microbial taxonomy 
is primarily guided by 16S rRNA relationships, and such discrepan-
cies are observable in 16S rRNA gene trees6,8, but most have not been 
corrected, owing to the scale of the task and the lengthy process of 
formally reclassifying microorganisms11.

A second, less obvious, issue with existing sequence-based micro-
bial taxonomies is the uneven application of taxonomic ranks across 
the tree. Regions that are the subject of intense study tend to be split 
into more taxa than other parts of the tree with equivalent phyloge-
netic depth; for example, the family Enterobacteriaceae (compris-
ing dozens of genera) is equivalent to a single genus in other parts 
of the tree, such as Bacillus12. Conversely, understudied groups are 
often lumped together; for example, the phylum Synergistetes is cur-
rently represented by a single family13 that would constitute multi-
ple family-level groupings in more intensively studied parts of the 

tree. A proposal to standardize taxonomic ranks by using 16S rRNA 
sequence identity thresholds has identified a high degree of discord-
ance between these thresholds and the SILVA taxonomy11.

Current microbial taxonomies based on 16S rRNA gene rela-
tionships3,6–8 have several limitations, including low phylogenetic 
resolution at the highest and lowest taxonomic ranks14, missing 
diversity as a result of primer mismatches15 and PCR-produced 
chimeric sequences that can corrupt tree topologies by drawing 
together disparate groups16. Trees inferred from the concatena-
tion of single-copy vertically inherited proteins provide higher 
resolution than those obtained from a single phylogenetic-marker 
gene17–19 and are increasingly representative of microbial diversity, 
as culture-independent techniques are now producing thousands 
of metagenome-assembled genomes (MAGs) from diverse micro-
bial communities20–22. Despite some caveats of their own, includ-
ing potential lateral gene transfer, differing rates of evolution, and 
recombination19,23, concatenated protein trees have been extensively 
used in the literature20,24,25 and have been proposed as the best basis 
for a reference bacterial phylogeny26.

Here we present a phylogeny inferred from the concatenation of 
120 ubiquitous single-copy proteins, and we used this phylogeny to 
propose a bacterial taxonomy that covers 94,759 bacterial genomes, 
including 13,636 (14.4%) from uncultured organisms (metagenome-
assembled or single-cell genomes). Taxonomic groups in this clas-
sification describe monophyletic lineages of similar phylogenetic 
depth after normalization for lineage-specific rates of evolution. This 
taxonomy, which we have named the GTDB taxonomy, is publicly 
available at the Genome Taxonomy Database website (http://gtdb.
ecogenomic.org/).

A standardized bacterial taxonomy based on genome 
phylogeny substantially revises the tree of life
Donovan H Parks, Maria Chuvochina, David W Waite, Christian Rinke , Adam Skarshewski,  
Pierre-Alain Chaumeil & Philip Hugenholtz    

Taxonomy is an organizing principle of biology and is ideally based on evolutionary relationships among organisms. Development 
of a robust bacterial taxonomy has been hindered by an inability to obtain most bacteria in pure culture and, to a lesser extent, by 
the historical use of phenotypes to guide classification. Culture-independent sequencing technologies have matured sufficiently 
that a comprehensive genome-based taxonomy is now possible. We used a concatenated protein phylogeny as the basis for a 
bacterial taxonomy that conservatively removes polyphyletic groups and normalizes taxonomic ranks on the basis of relative 
evolutionary divergence. Under this approach, 58% of the 94,759 genomes comprising the Genome Taxonomy Database had 
changes to their existing taxonomy. This result includes the description of 99 phyla, including six major monophyletic units from 
the subdivision of the Proteobacteria, and amalgamation of the Candidate Phyla Radiation into a single phylum. Our taxonomy 
should enable improved classification of uncultured bacteria and provide a sound basis for ecological and evolutionary studies.

Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Queensland, Australia. Correspondence should be 
addressed to P.H. (p.hugenholtz@uq.edu.au).
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Introduction to the Pangenome 
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Gene Content of a Species 

In	‘Small	Things	Considered’	
June	12,	2014	–	schaechter.asmblog.org	

Of	Terms	in	Biology:	The	Pan-Genome		
by	Christoph	Weigel	

Horizontal	gene	transfer	occurs	
more	readily	between	closely	related	organisms	

Horizontal Gene Transfer 

§  Many important character traits have 
evolutionary history that is not coherent with 
core phylogeny. 

§  Pathogenicity, drug resistance are prime 
examples. 

§  Also more basic metabolic traits, e.g.  
substrate utilization, sulfate reduction, 
nitrogen  fixation and many others have 
been horizontally transferred multiple times 
during evolution. 

h:p://rdp.cme.msu.edu	 47	
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Nitrogen Fixation 

Archaea 

	acteria 

The Sphaerochaeta: �
 a unique genus in the Spirochaetes  

h:p://rdp.cme.msu.edu	 49	
A. Caro-Quintero et al. mBio 2012; doi:10.1128/mBio.
00025-12 

Treponema	pallidum,	a	spirochete.		
	 	 	 	 	(CDC.gov)	

Phylogenetic affiliation of S. globosa and S. pleomorpha.  

A. Caro-Quintero et al. mBio 2012; doi:10.1128/mBio.
00025-12 

HGT between Sphaerochaeta spp. and Clostridiales.  

A. Caro-Quintero et al. mBio 2012; doi:10.1128/mBio.
00025-12 

ANI & AAI: Including non-core 
genes into relatedness 
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ANI & AAI 

§  AAI: Average amino acid identity between 
the protein-coding genes in common 
between two genome sequences 

§  ANI: Average nucleotide identity between 
the shared segments of two genome 
sequences. 
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Average Identity Methodology 

§  Determine all orthologous pairs 
§  Measure the percent identity for each pair 
§  Take the average  

h:p://rdp.cme.msu.edu	 54	

Need to find comparable genes �
for Average Identity methods 

§  Homologous: 
– The existence of shared ancestry between a pair 

of genes. 

§  Orthologous: 
–  Inherited by two organisms from the same 

ancestral sequence. (Usually same function.) 

§  Paralogous: 
– Originally created by a duplication event within a 

single genome. (May have different functions.) 

Reciprocal Best Matches �
- Likely Orthologs 

St
ra
in
	A
	g
en

es
	

St
ra
in
	B
	g
en

es
	

Best matches not reciprocal �
- Potential Paralogs? 
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	B
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ANI & AAI: Pros and Cons 

§  Advantages of Average Identity: 
– Takes into account all related data 
–   Can be used to classify organisms into 

existing or new clades 

§  Disadvantages of Average Identity: 
– Can not be used directly for phylogenetic 

analysis 
– Collapses multidimensional into a single 

distance measure 

h:p://rdp.cme.msu.edu	 58	
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ABSTRACT

The small subunit ribosomal RNA gene (16S rRNA)
has been successfully used to catalogue and study
the diversity of prokaryotic species and communi-
ties but it offers limited resolution at the species
and finer levels, and cannot represent the whole-
genome diversity and fluidity. To overcome these lim-
itations, we introduced the Microbial Genomes At-
las (MiGA), a webserver that allows the classification
of an unknown query genomic sequence, complete
or partial, against all taxonomically classified taxa
with available genome sequences, as well as com-
parisons to other related genomes including unculti-
vated ones, based on the genome-aggregate Average
Nucleotide and Amino Acid Identity (ANI/AAI) con-
cepts. MiGA integrates best practices in sequence
quality trimming and assembly and allows input to
be raw reads or assemblies from isolate genomes,
single-cell sequences, and metagenome-assembled
genomes (MAGs). Further, MiGA can take as input
hundreds of closely related genomes of the same or
closely related species (a so-called ‘Clade Project’) to
assess their gene content diversity and evolutionary
relationships, and calculate important clade prop-
erties such as the pangenome and core gene sets.
Therefore, MiGA is expected to facilitate a range of
genome-based taxonomic and diversity studies, and
quality assessment across environmental and clin-
ical settings. MiGA is available at http://microbial-
genomes.org/.

MiGA CLASSIFICATION OF A QUERY GENOMIC SE-
QUENCE

The small subunit ribosomal RNA gene (16S) has been
successfully used to catalogue and study the diversity of
prokaryotic species and their communities for over thirty
years. However, genome-based methods are needed to bet-
ter resolve microbial communities at the species and finer
levels, which cannot be efficiently assessed by 16S (1), and
to catalogue whole-genome diversity and fluidity. One such
genomic method is the Average Nucleotide Identity or ANI
(2,3). ANI represents the average nucleotide identity of all
orthologous genes shared between any two genomes and of-
fers robust resolution between strains of the same or closely
related species (i.e. showing 80–100% ANI). The ANI mea-
surement does not strictly represent core genome evolution-
ary relatedness, as orthologous genes can vary widely be-
tween pairs of genomes compared. Nevertheless, it closely
reflects the traditional microbiological concept of DNA-
DNA hybridization (DDH) relatedness for genomically cir-
cumscribing species (2,3), as it takes into account the fluid
nature of the bacterial gene pool and hence, implicitly con-
siders shared function. Accordingly, ANI has been recog-
nized internationally for its potential to replace DDH as the
standard measure of relatedness, as it is easier to estimate
and represents portable and reproducible data (4,5).

The Microbial Genomes Atlas (MiGA) project offers ro-
bust taxonomic classification of a query genome or assem-
bled contig sequences based on ANI or, for more divergent
(deep-branching) sequences, Average Amino Acid Identity
(AAI; (6)) values against a reference genome database. The
reference database could be NCBI’s RefSeq, which encom-
pass 1927 high-quality closed genomes from 1865 species
(as of May 2018; updated bimonthly), or the NCBI Genome
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64	Medoid	clustering	

Many other functions in MiGA 
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Taxonomy in the Genomics Era 

§  A set of core genes have evolved together with little 
horizontal transfer and produce more reliable 
phylogenetic inferences than rRNA alone. 

§   Incorporating these data can improve our current 
taxonomy, especially for the more basal ranks. 

§  Methods such as Average Identity are better able to 
discriminate at the species and subspecies levels. 

§  A strictly hierarchical taxonomy can hide important 
(dis)similarities and in the future taxonomists may 
explore new structures that accommodate these extra 
information. 
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